A Broader View on Clustering under Cluster-Aware Norm Objectives
By: Martin G. Herold, Evangelos Kipouridis, Joachim Spoerhase
We revisit the $(f,g)$-clustering problem that we introduced in a recent work [SODA'25], and which subsumes fundamental clustering problems such as $k$-Center, $k$-Median, Min-Sum of Radii, and Min-Load $k$-Clustering. This problem assigns each of the $k$ clusters a cost determined by the monotone, symmetric norm $f$ applied to the vector distances in the cluster, and aims at minimizing the norm $g$ applied to the vector of cluster costs. Previously, we focused on certain special cases for which we designed constant-factor approximation algorithms. Our bounds for more general settings left, however, large gaps to the known bounds for the basic problems they capture. In this work, we provide a clearer picture of the approximability of these more general settings. First, we design an $O(\log^2 n)$-approximation algorithm for $(f, L_{1})$-clustering for any $f$. This improves upon our previous $\widetilde{O}(\sqrt{n})$-approximation. Second, we provide an $O(k)$-approximation for the general $(f,g)$-clustering problem, which improves upon our previous $\widetilde{O}(\sqrt{kn})$-approximation algorithm and matches the best-known upper bound for Min-Load $k$-Clustering. We then design an approximation algorithm for $(f,g)$-clustering that interpolates, up to polylog factors, between the best known bounds for $k$-Center, $k$-Median, Min-Sum of Radii, Min-Load $k$-Clustering, (Top, $L_{1}$)-clustering, and $(L_{\infty},g)$-clustering based on a newly defined parameter of $f$ and $g$.
Similar Papers
Clustering in Varying Metrics
Data Structures and Algorithms
Finds best group for data from many views.
Competitively Consistent Clustering
Data Structures and Algorithms
Keeps groups of data organized efficiently over time.
New Algorithms and Hardness Results for Connected Clustering
Data Structures and Algorithms
Groups things together so they stay connected.