Score: 0

Who Will Top the Charts? Multimodal Music Popularity Prediction via Adaptive Fusion of Modality Experts and Temporal Engagement Modeling

Published: December 6, 2025 | arXiv ID: 2512.06259v1

By: Yash Choudhary, Preeti Rao, Pushpak Bhattacharyya

Potential Business Impact:

Predicts hit songs before they are released.

Business Areas:
Music Streaming Internet Services, Media and Entertainment, Music and Audio

Predicting a song's commercial success prior to its release remains an open and critical research challenge for the music industry. Early prediction of music popularity informs strategic decisions, creative planning, and marketing. Existing methods suffer from four limitations:(i) temporal dynamics in audio and lyrics are averaged away; (ii) lyrics are represented as a bag of words, disregarding compositional structure and affective semantics; (iii) artist- and song-level historical performance is ignored; and (iv) multimodal fusion approaches rely on simple feature concatenation, resulting in poorly aligned shared representations. To address these limitations, we introduce GAMENet, an end-to-end multimodal deep learning architecture for music popularity prediction. GAMENet integrates modality-specific experts for audio, lyrics, and social metadata through an adaptive gating mechanism. We use audio features from Music4AllOnion processed via OnionEnsembleAENet, a network of autoencoders designed for robust feature extraction; lyric embeddings derived through a large language model pipeline; and newly introduced Career Trajectory Dynamics (CTD) features that capture multi-year artist career momentum and song-level trajectory statistics. Using the Music4All dataset (113k tracks), previously explored in MIR tasks but not popularity prediction, GAMENet achieves a 12% improvement in R^2 over direct multimodal feature concatenation. Spotify audio descriptors alone yield an R^2 of 0.13. Integrating aggregate CTD features increases this to 0.69, with an additional 7% gain from temporal CTD features. We further validate robustness using the SpotGenTrack Popularity Dataset (100k tracks), achieving a 16% improvement over the previous baseline. Extensive ablations confirm the model's effectiveness and the distinct contribution of each modality.

Country of Origin
🇮🇳 India

Page Count
9 pages

Category
Computer Science:
Sound