Score: 2

MINES: Explainable Anomaly Detection through Web API Invariant Inference

Published: December 7, 2025 | arXiv ID: 2512.06906v1

By: Wenjie Zhang , Yun Lin , Chun Fung Amos Kwok and more

Potential Business Impact:

Finds hidden problems in online systems.

Business Areas:
Predictive Analytics Artificial Intelligence, Data and Analytics, Software

Detecting the anomalies of web applications, important infrastructures for running modern companies and governments, is crucial for providing reliable web services. Many modern web applications operate on web APIs (e.g., RESTful, SOAP, and WebSockets), their exposure invites intended attacks or unintended illegal visits, causing abnormal system behaviors. However, such anomalies can share very similar logs with normal logs, missing crucial information (which could be in database) for log discrimination. Further, log instances can be also noisy, which can further mislead the state-of-the-art log learning solutions to learn spurious correlation, resulting superficial models and rules for anomaly detection. In this work, we propose MINES which infers explainable API invariants for anomaly detection from the schema level instead of detailed raw log instances, which can (1) significantly discriminate noise in logs to identify precise normalities and (2) detect abnormal behaviors beyond the instrumented logs. Technically, MINES (1) converts API signatures into table schema to enhance the original database shema; and (2) infers the potential database constraints on the enhanced database schema to capture the potential relationships between APIs and database tables. MINES uses LLM for extracting potential relationship based on two given table structures; and use normal log instances to reject and accept LLM-generated invariants. Finally, MINES translates the inferred constraints into invariants to generate Python code for verifying the runtime logs. We extensively evaluate MINES on web-tamper attacks on the benchmarks of TrainTicket, NiceFish, Gitea, Mastodon, and NextCloud against baselines such as LogRobust, LogFormer, and WebNorm. The results show that MINES achieves high recall for the anomalies while introducing almost zero false positives, indicating a new state-of-the-art.

Country of Origin
πŸ‡¨πŸ‡³ πŸ‡ΈπŸ‡¬ China, Singapore

Page Count
13 pages

Category
Computer Science:
Software Engineering