Affine Subspace Models and Clustering for Patch-Based Image Denoising
By: Tharindu Wickremasinghe, Marco F. Duarte
Potential Business Impact:
Cleans up blurry pictures by grouping similar parts.
Image tile-based approaches are popular in many image processing applications such as denoising (e.g., non-local means). A key step in their use is grouping the images into clusters, which usually proceeds iteratively splitting the images into clusters and fitting a model for the images in each cluster. Linear subspaces have emerged as a suitable model for tile clusters; however, they are not well matched to images patches given that images are non-negative and thus not distributed around the origin in the tile vector space. We study the use of affine subspace models for the clusters to better match the geometric structure of the image tile vector space. We also present a simple denoising algorithm that relies on the affine subspace clustering model using least squares projection. We review several algorithmic approaches to solve the affine subspace clustering problem and show experimental results that highlight the performance improvements in clustering and denoising.
Similar Papers
Back to Basics: Let Denoising Generative Models Denoise
CV and Pattern Recognition
Makes AI create clearer pictures by predicting them directly.
Scalable Context-Preserving Model-Aware Deep Clustering for Hyperspectral Images
CV and Pattern Recognition
Finds patterns in images faster and better.
Robust Physical Adversarial Patches Using Dynamically Optimized Clusters
CV and Pattern Recognition
Makes fake pictures fool computers even when resized.