Score: 0

Expectations in Expectation Propagation

Published: December 8, 2025 | arXiv ID: 2512.08034v1

By: Zilu Zhao, Fangqing Xiao, Dirk Slock

Expectation Propagation (EP) is a widely used message-passing algorithm that decomposes a global inference problem into multiple local ones. It approximates marginal distributions (beliefs) using intermediate functions (messages). While beliefs must be proper probability distributions that integrate to one, messages may have infinite integral values. In Gaussian-projected EP, such messages take a Gaussian form and appear as if they have "negative" variances. Although allowed within the EP framework, these negative-variance messages can impede algorithmic progress. In this paper, we investigate EP in linear models and analyze the relationship between the corresponding beliefs. Based on the analysis, we propose both non-persistent and persistent approaches that prevent the algorithm from being blocked by messages with infinite integral values. Furthermore, by examining the relationship between the EP messages in linear models, we develop an additional approach that avoids the occurrence of messages with infinite integral values.

Category
Computer Science:
Information Theory