Model-Based Diffusion Sampling for Predictive Control in Offline Decision Making
By: Haldun Balim, Na Li, Yilun Du
Offline decision-making requires synthesizing reliable behaviors from fixed datasets without further interaction, yet existing generative approaches often yield trajectories that are dynamically infeasible. We propose Model Predictive Diffuser (MPDiffuser), a compositional model-based diffusion framework consisting of: (i) a planner that generates diverse, task-aligned trajectories; (ii) a dynamics model that enforces consistency with the underlying system dynamics; and (iii) a ranker module that selects behaviors aligned with the task objectives. MPDiffuser employs an alternating diffusion sampling scheme, where planner and dynamics updates are interleaved to progressively refine trajectories for both task alignment and feasibility during the sampling process. We also provide a theoretical rationale for this procedure, showing how it balances fidelity to data priors with dynamics consistency. Empirically, the compositional design improves sample efficiency, as it leverages even low-quality data for dynamics learning and adapts seamlessly to novel dynamics. We evaluate MPDiffuser on both unconstrained (D4RL) and constrained (DSRL) offline decision-making benchmarks, demonstrating consistent gains over existing approaches. Furthermore, we present a preliminary study extending MPDiffuser to vision-based control tasks, showing its potential to scale to high-dimensional sensory inputs. Finally, we deploy our method on a real quadrupedal robot, showcasing its practicality for real-world control.
Similar Papers
Flexible Locomotion Learning with Diffusion Model Predictive Control
Robotics
Robots learn to walk and change how they move.
Safe Model Predictive Diffusion with Shielding
Robotics
Robots learn to move safely and efficiently.
Dynamics-aware Diffusion Models for Planning and Control
Robotics
Makes robots move safely in tricky places.