Self-Reinforced Deep Priors for Reparameterized Full Waveform Inversion
By: Guangyuan Zou , Junlun Li , Feng Liu and more
Full waveform inversion (FWI) has become a widely adopted technique for high-resolution subsurface imaging. However, its inherent strong nonlinearity often results in convergence toward local minima. Recently, deep image prior-based reparameterized FWI (DIP-FWI) has been proposed to alleviate the dependence on massive training data. By exploiting the spectral bias and implicit regularization in the neural network architecture, DIP-FWI can effectively avoid local minima and reconstruct more geologically plausible velocity models. Nevertheless, existing DIP-FWI typically use a fixed random input throughout the inversion process, which fails to utilize the mapping and correlation between the input and output of the network. Moreover, under complex geological conditions, the lack of informative prior in the input can exacerbate the ill-posedness of the inverse problem, leading to artifacts and unstable reconstructions. To address these limitations, we propose a self-reinforced DIP-FWI (SRDIP-FWI) framework, in which a steering algorithm alternately updates both the network parameters and the input at each iteration using feedback from the current network output. This design allows adaptive structural enhancement and improved regularization, thereby effectively mitigating the ill-posedness in FWI. Additionally, we analyze the spectral bias of the network in SRDIP-FWI and quantify its role in multiscale velocity model building. Synthetic tests and field land data application demonstrate that SRDIP-FWI achieves superior resolution, improved accuracy and greater depth penetration compared to multiscale FWI. More importantly, SRDIP-FWI eliminates the need for manual frequency-band selection and time-window picking, substantially simplifying the inversion workflow. Overall, the proposed method provides a novel, adaptive and robust framework for accurate subsurface velocity model reconstruction.
Similar Papers
A new practical and effective source-independent full-waveform inversion with a velocity-distribution supported deep image prior: Applications to two real datasets
Geophysics
Finds underground oil and gas better.
Physics-informed waveform inversion using pretrained wavefield neural operators
Geophysics
Makes underground maps clearer and faster.
Initial Model Incorporation for Deep Learning FWI: Pretraining or Denormalization?
Machine Learning (CS)
Helps map underground better with smarter computer learning.