Score: 2

Fast-ARDiff: An Entropy-informed Acceleration Framework for Continuous Space Autoregressive Generation

Published: December 9, 2025 | arXiv ID: 2512.08537v1

By: Zhen Zou , Xiaoxiao Ma , Jie Huang and more

Potential Business Impact:

Makes AI create pictures and text much faster.

Business Areas:
Augmented Reality Hardware, Software

Autoregressive(AR)-diffusion hybrid paradigms combine AR's structured modeling with diffusion's photorealistic synthesis, yet suffer from high latency due to sequential AR generation and iterative denoising. In this work, we tackle this bottleneck and propose a unified AR-diffusion framework Fast-ARDiff that jointly optimizes both components, accelerating AR speculative decoding while simultaneously facilitating faster diffusion decoding. Specifically: (1) The entropy-informed speculative strategy encourages draft model to produce higher-entropy representations aligned with target model's entropy characteristics, mitigating entropy mismatch and high rejection rates caused by draft overconfidence. (2) For diffusion decoding, rather than treating it as an independent module, we integrate it into the same end-to-end framework using a dynamic scheduler that prioritizes AR optimization to guide the diffusion part in further steps. The diffusion part is optimized through a joint distillation framework combining trajectory and distribution matching, ensuring stable training and high-quality synthesis with extremely few steps. During inference, shallow feature entropy from AR module is used to pre-filter low-entropy drafts, avoiding redundant computation and improving latency. Fast-ARDiff achieves state-of-the-art acceleration across diverse models: on ImageNet 256$\times$256, TransDiff attains 4.3$\times$ lossless speedup, and NextStep-1 achieves 3$\times$ acceleration on text-conditioned generation. Code will be available at https://github.com/aSleepyTree/Fast-ARDiff.

Country of Origin
🇨🇳 China

Repos / Data Links

Page Count
16 pages

Category
Computer Science:
CV and Pattern Recognition