Score: 0

The SMART+ Framework for AI Systems

Published: December 9, 2025 | arXiv ID: 2512.08592v1

By: Laxmiraju Kandikatla, Branislav Radeljic

Artificial Intelligence (AI) systems are now an integral part of multiple industries. In clinical research, AI supports automated adverse event detection in clinical trials, patient eligibility screening for protocol enrollment, and data quality validation. Beyond healthcare, AI is transforming finance through real-time fraud detection, automated loan risk assessment, and algorithmic decision-making. Similarly, in manufacturing, AI enables predictive maintenance to reduce equipment downtime, enhances quality control through computer-vision inspection, and optimizes production workflows using real-time operational data. While these technologies enhance operational efficiency, they introduce new challenges regarding safety, accountability, and regulatory compliance. To address these concerns, we introduce the SMART+ Framework - a structured model built on the pillars of Safety, Monitoring, Accountability, Reliability, and Transparency, and further enhanced with Privacy & Security, Data Governance, Fairness & Bias, and Guardrails. SMART+ offers a practical, comprehensive approach to evaluating and governing AI systems across industries. This framework aligns with evolving mechanisms and regulatory guidance to integrate operational safeguards, oversight procedures, and strengthened privacy and governance controls. SMART+ demonstrates risk mitigation, trust-building, and compliance readiness. By enabling responsible AI adoption and ensuring auditability, SMART+ provides a robust foundation for effective AI governance in clinical research.

Category
Computer Science:
Artificial Intelligence