SATGround: A Spatially-Aware Approach for Visual Grounding in Remote Sensing
By: Aysim Toker , Andreea-Maria Oncescu , Roy Miles and more
Vision-language models (VLMs) are emerging as powerful generalist tools for remote sensing, capable of integrating information across diverse tasks and enabling flexible, instruction-based interactions via a chat interface. In this work, we enhance VLM-based visual grounding in satellite imagery by proposing a novel structured localization mechanism. Our approach involves finetuning a pretrained VLM on a diverse set of instruction-following tasks, while interfacing a dedicated grounding module through specialized control tokens for localization. This method facilitates joint reasoning over both language and spatial information, significantly enhancing the model's ability to precisely localize objects in complex satellite scenes. We evaluate our framework on several remote sensing benchmarks, consistently improving the state-of-the-art, including a 24.8% relative improvement over previous methods on visual grounding. Our results highlight the benefits of integrating structured spatial reasoning into VLMs, paving the way for more reliable real-world satellite data analysis.
Similar Papers
GeoViS: Geospatially Rewarded Visual Search for Remote Sensing Visual Grounding
CV and Pattern Recognition
Finds tiny things in big satellite pictures.
G$^2$VLM: Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning
CV and Pattern Recognition
Teaches computers to understand 3D space from pictures.
G$^2$VLM: Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning
CV and Pattern Recognition
Helps computers understand 3D space from pictures.