Accelerated Rotation-Invariant Convolution for UAV Image Segmentation
By: Manduhu Manduhu , Alexander Dow , Gerard Dooly and more
Rotation invariance is essential for precise, object-level segmentation in UAV aerial imagery, where targets can have arbitrary orientations and exhibit fine-scale details. Conventional segmentation architectures like U-Net rely on convolution operators that are not rotation-invariant, leading to degraded segmentation accuracy across varying viewpoints. Rotation invariance can be achieved by expanding the filter bank across multiple orientations; however, this will significantly increase computational cost and memory traffic. In this paper, we introduce a GPU-optimized rotation-invariant convolution framework that eliminates the traditional data-lowering (im2col) step required for matrix-multiplication-based convolution. By exploiting structured data sharing among symmetrically rotated filters, our method achieves multi-orientation convolution with greatly reduced memory traffic and computational redundancy. We further generalize the approach to accelerate convolution with arbitrary (non-symmetric) rotation angles. Across extensive benchmarks, the proposed convolution achieves 20--55% faster training and 15--45% lower energy consumption than CUDNN, while maintaining accuracy comparable to state-of-the-art rotation-invariant methods. In the eight-orientation setting, our approach achieves up to 45% speedup and 41% energy savings on 256\(\times\)256 inputs, and 32% speedup and 23% lower energy usage on 1024\(\times\)1024 inputs. Integrated into a U-Net segmentation model, the framework yields up to 6% improvement in accuracy over the non-rotation-aware baseline. These results demonstrate that the proposed method provides an effective and highly efficient alternative to existing rotation-invariant CNN frameworks.
Similar Papers
Dual-Projection Fusion for Accurate Upright Panorama Generation in Robotic Vision
CV and Pattern Recognition
Makes robot pictures straight for better seeing.
Enhancing Rotation-Invariant 3D Learning with Global Pose Awareness and Attention Mechanisms
CV and Pattern Recognition
Helps computers tell apart similar 3D shapes.
Quaternion Approximation Networks for Enhanced Image Classification and Oriented Object Detection
CV and Pattern Recognition
Helps computers see objects from any angle.