Score: 2

Improved Pseudorandom Codes from Permuted Puzzles

Published: December 9, 2025 | arXiv ID: 2512.08918v1

By: Miranda Christ , Noah Golowich , Sam Gunn and more

BigTech Affiliations: University of California, Berkeley Massachusetts Institute of Technology

Potential Business Impact:

Finds AI writing even when changed a little.

Business Areas:
QR Codes Software

Watermarks are an essential tool for identifying AI-generated content. Recently, Christ and Gunn (CRYPTO '24) introduced pseudorandom error-correcting codes (PRCs), which are equivalent to watermarks with strong robustness and quality guarantees. A PRC is a pseudorandom encryption scheme whose decryption algorithm tolerates a high rate of errors. Pseudorandomness ensures quality preservation of the watermark, and error tolerance of decryption translates to the watermark's ability to withstand modification of the content. In the short time since the introduction of PRCs, several works (NeurIPS '24, RANDOM '25, STOC '25) have proposed new constructions. Curiously, all of these constructions are vulnerable to quasipolynomial-time distinguishing attacks. Furthermore, all lack robustness to edits over a constant-sized alphabet, which is necessary for a meaningfully robust LLM watermark. Lastly, they lack robustness to adversaries who know the watermarking detection key. Until now, it was not clear whether any of these properties was achievable individually, let alone together. We construct pseudorandom codes that achieve all of the above: plausible subexponential pseudorandomness security, robustness to worst-case edits over a binary alphabet, and robustness against even computationally unbounded adversaries that have the detection key. Pseudorandomness rests on a new assumption that we formalize, the permuted codes conjecture, which states that a distribution of permuted noisy codewords is pseudorandom. We show that this conjecture is implied by the permuted puzzles conjecture used previously to construct doubly efficient private information retrieval. To give further evidence, we show that the conjecture holds against a broad class of simple distinguishers, including read-once branching programs.

Country of Origin
🇺🇸 United States

Page Count
49 pages

Category
Computer Science:
Cryptography and Security