A Diffusion-Based Framework for High-Resolution Precipitation Forecasting over CONUS
By: Marina Vicens-Miquel , Amy McGovern , Aaron J. Hill and more
Accurate precipitation forecasting is essential for hydrometeorological risk management, especially for anticipating extreme rainfall that can lead to flash flooding and infrastructure damage. This study introduces a diffusion-based deep learning (DL) framework that systematically compares three residual prediction strategies differing only in their input sources: (1) a fully data-driven model using only past observations from the Multi-Radar Multi-Sensor (MRMS) system, (2) a corrective model using only forecasts from the High-Resolution Rapid Refresh (HRRR) numerical weather prediction system, and (3) a hybrid model integrating both MRMS and selected HRRR forecast variables. By evaluating these approaches under a unified setup, we provide a clearer understanding of how each data source contributes to predictive skill over the Continental United States (CONUS). Forecasts are produced at 1-km spatial resolution, beginning with direct 1-hour predictions and extending to 12 hours using autoregressive rollouts. Performance is evaluated using both CONUS-wide and region-specific metrics that assess overall performance and skill at extreme rainfall thresholds. Across all lead times, our DL framework consistently outperforms the HRRR baseline in pixel-wise and spatiostatistical metrics. The hybrid model performs best at the shortest lead time, while the HRRR-corrective model outperforms others at longer lead times, maintaining high skill through 12 hours. To assess reliability, we incorporate calibrated uncertainty quantification tailored to the residual learning setup. These gains, particularly at longer lead times, are critical for emergency preparedness, where modest increases in forecast horizon can improve decision-making. This work advances DL-based precipitation forecasting by enhancing predictive skill, reliability, and applicability across regions.
Similar Papers
China Regional 3km Downscaling Based on Residual Corrective Diffusion Model
Machine Learning (CS)
Makes weather forecasts more detailed and accurate.
Nowcast3D: Reliable precipitation nowcasting via gray-box learning
Machine Learning (CS)
Predicts heavy rain up to three hours ahead.
A Review of End-to-End Precipitation Prediction Using Remote Sensing Data: from Divination to Machine Learning
Machine Learning (CS)
Predicts rain better using old and new science.