Score: 0

AgentComp: From Agentic Reasoning to Compositional Mastery in Text-to-Image Models

Published: December 9, 2025 | arXiv ID: 2512.09081v1

By: Arman Zarei , Jiacheng Pan , Matthew Gwilliam and more

Text-to-image generative models have achieved remarkable visual quality but still struggle with compositionality$-$accurately capturing object relationships, attribute bindings, and fine-grained details in prompts. A key limitation is that models are not explicitly trained to differentiate between compositionally similar prompts and images, resulting in outputs that are close to the intended description yet deviate in fine-grained details. To address this, we propose AgentComp, a framework that explicitly trains models to better differentiate such compositional variations and enhance their reasoning ability. AgentComp leverages the reasoning and tool-use capabilities of large language models equipped with image generation, editing, and VQA tools to autonomously construct compositional datasets. Using these datasets, we apply an agentic preference optimization method to fine-tune text-to-image models, enabling them to better distinguish between compositionally similar samples and resulting in overall stronger compositional generation ability. AgentComp achieves state-of-the-art results on compositionality benchmarks such as T2I-CompBench, without compromising image quality$-$a common drawback in prior approaches$-$and even generalizes to other capabilities not explicitly trained for, such as text rendering.

Category
Computer Science:
CV and Pattern Recognition