Traffic Scene Small Target Detection Method Based on YOLOv8n-SPTS Model for Autonomous Driving
By: Songhan Wu
This paper focuses on the key issue in autonomous driving: small target recognition in dynamic perception. Existing algorithms suffer from poor detection performance due to missing small target information, scale imbalance, and occlusion. We propose an improved YOLOv8n-SPTS model, which enhances the detection accuracy of small traffic targets through three key innovations: First, optimizing the feature extraction module. In the Backbone Bottleneck structure of YOLOv8n, 4 traditional convolution modules are replaced with Space-to-Depth Convolution (SPD-Conv) modules. This module retains fine-grained information through space-to-depth conversion, reduces information loss, and enhances the ability to capture features of low-resolution small targets. Second, enhancing feature fusion capability. The Spatial Pyramid Pooling - Fast Cross Stage Partial Connection (SPPFCSPC) module is introduced to replace the original SPPF module, integrating the multi-scale feature extraction from Spatial Pyramid Pooling (SPP) and the feature fusion mechanism of Cross Stage Partial Connection (CSP), thereby improving the model's contextual understanding of complex scenes and multi-scale feature expression ability. Third, designing a dedicated detection structure for small targets. A Triple-Stage Feature Pyramid (TSFP) structure is proposed, which adds a 160*160 small target detection head to the original detection heads to fully utilize high-resolution features in shallow layers; meanwhile, redundant large target detection heads are removed to balance computational efficiency. Comparative experiments on the VisDrone2019-DET dataset show that YOLOv8n-SPTS model ranks first in precision (61.9%), recall (48.3%), mAP@0.5 (52.6%), and mAP@0.5:0.95 (32.6%). Visualization results verify that the miss rate of small targets such as pedestrians and bicycles in occluded and dense scenes is significantly reduced.
Similar Papers
SBP-YOLO:A Lightweight Real-Time Model for Detecting Speed Bumps and Potholes
CV and Pattern Recognition
Helps cars spot bumps and holes instantly.
Enhancing Traffic Sign Recognition On The Performance Based On Yolov8
CV and Pattern Recognition
Helps self-driving cars see traffic signs better.
Enhancing Small Object Detection with YOLO: A Novel Framework for Improved Accuracy and Efficiency
CV and Pattern Recognition
Finds tiny things in big sky pictures.