Score: 0

Traffic Scene Small Target Detection Method Based on YOLOv8n-SPTS Model for Autonomous Driving

Published: December 10, 2025 | arXiv ID: 2512.09296v1

By: Songhan Wu

This paper focuses on the key issue in autonomous driving: small target recognition in dynamic perception. Existing algorithms suffer from poor detection performance due to missing small target information, scale imbalance, and occlusion. We propose an improved YOLOv8n-SPTS model, which enhances the detection accuracy of small traffic targets through three key innovations: First, optimizing the feature extraction module. In the Backbone Bottleneck structure of YOLOv8n, 4 traditional convolution modules are replaced with Space-to-Depth Convolution (SPD-Conv) modules. This module retains fine-grained information through space-to-depth conversion, reduces information loss, and enhances the ability to capture features of low-resolution small targets. Second, enhancing feature fusion capability. The Spatial Pyramid Pooling - Fast Cross Stage Partial Connection (SPPFCSPC) module is introduced to replace the original SPPF module, integrating the multi-scale feature extraction from Spatial Pyramid Pooling (SPP) and the feature fusion mechanism of Cross Stage Partial Connection (CSP), thereby improving the model's contextual understanding of complex scenes and multi-scale feature expression ability. Third, designing a dedicated detection structure for small targets. A Triple-Stage Feature Pyramid (TSFP) structure is proposed, which adds a 160*160 small target detection head to the original detection heads to fully utilize high-resolution features in shallow layers; meanwhile, redundant large target detection heads are removed to balance computational efficiency. Comparative experiments on the VisDrone2019-DET dataset show that YOLOv8n-SPTS model ranks first in precision (61.9%), recall (48.3%), mAP@0.5 (52.6%), and mAP@0.5:0.95 (32.6%). Visualization results verify that the miss rate of small targets such as pedestrians and bicycles in occluded and dense scenes is significantly reduced.

Category
Computer Science:
CV and Pattern Recognition