CFLight: Enhancing Safety with Traffic Signal Control through Counterfactual Learning
By: Mingyuan Li , Chunyu Liu , Zhuojun Li and more
Traffic accidents result in millions of injuries and fatalities globally, with a significant number occurring at intersections each year. Traffic Signal Control (TSC) is an effective strategy for enhancing safety at these urban junctures. Despite the growing popularity of Reinforcement Learning (RL) methods in optimizing TSC, these methods often prioritize driving efficiency over safety, thus failing to address the critical balance between these two aspects. Additionally, these methods usually need more interpretability. CounterFactual (CF) learning is a promising approach for various causal analysis fields. In this study, we introduce a novel framework to improve RL for safety aspects in TSC. This framework introduces a novel method based on CF learning to address the question: ``What if, when an unsafe event occurs, we backtrack to perform alternative actions, and will this unsafe event still occur in the subsequent period?'' To answer this question, we propose a new structure causal model to predict the result after executing different actions, and we propose a new CF module that integrates with additional ``X'' modules to promote safe RL practices. Our new algorithm, CFLight, which is derived from this framework, effectively tackles challenging safety events and significantly improves safety at intersections through a near-zero collision control strategy. Through extensive numerical experiments on both real-world and synthetic datasets, we demonstrate that CFLight reduces collisions and improves overall traffic performance compared to conventional RL methods and the recent safe RL model. Moreover, our method represents a generalized and safe framework for RL methods, opening possibilities for applications in other domains. The data and code are available in the github https://github.com/MJLee00/CFLight-Enhancing-Safety-with-Traffic-Signal-Control-through-Counterfactual-Learning.
Similar Papers
Traffic-R1: Reinforced LLMs Bring Human-Like Reasoning to Traffic Signal Control Systems
Artificial Intelligence
Cuts traffic queues with smart, adaptable lights
Evolutionary Discovery of Heuristic Policies for Traffic Signal Control
Artificial Intelligence
Teaches traffic lights to be smarter and faster.
Convergence of Multiagent Learning Systems for Traffic control
Machine Learning (CS)
Makes traffic lights smarter to reduce jams.