Score: 0

Beyond Sequences: A Benchmark for Atomic Hand-Object Interaction Using a Static RNN Encoder

Published: December 10, 2025 | arXiv ID: 2512.09626v1

By: Yousef Azizi Movahed, Fatemeh Ziaeetabar

Reliably predicting human intent in hand-object interactions is an open challenge for computer vision. Our research concentrates on a fundamental sub-problem: the fine-grained classification of atomic interaction states, namely 'approaching', 'grabbing', and 'holding'. To this end, we introduce a structured data engineering process that converts raw videos from the MANIAC dataset into 27,476 statistical-kinematic feature vectors. Each vector encapsulates relational and dynamic properties from a short temporal window of motion. Our initial hypothesis posited that sequential modeling would be critical, leading us to compare static classifiers (MLPs) against temporal models (RNNs). Counter-intuitively, the key discovery occurred when we set the sequence length of a Bidirectional RNN to one (seq_length=1). This modification converted the network's function, compelling it to act as a high-capacity static feature encoder. This architectural change directly led to a significant accuracy improvement, culminating in a final score of 97.60%. Of particular note, our optimized model successfully overcame the most challenging transitional class, 'grabbing', by achieving a balanced F1-score of 0.90. These findings provide a new benchmark for low-level hand-object interaction recognition using structured, interpretable features and lightweight architectures.

Category
Computer Science:
CV and Pattern Recognition