Mind the Gap! Pathways Towards Unifying AI Safety and Ethics Research
By: Dani Roytburg, Beck Miller
Potential Business Impact:
Makes AI safe and fair for everyone.
While much research in artificial intelligence (AI) has focused on scaling capabilities, the accelerating pace of development makes countervailing work on producing harmless, "aligned" systems increasingly urgent. Yet research on alignment has diverged along two largely parallel tracks: safety--centered on scaled intelligence, deceptive or scheming behaviors, and existential risk--and ethics--focused on present harms, the reproduction of social bias, and flaws in production pipelines. Although both communities warn of insufficient investment in alignment, they disagree on what alignment means or ought to mean. As a result, their efforts have evolved in relative isolation, shaped by distinct methodologies, institutional homes, and disciplinary genealogies. We present a large-scale, quantitative study showing the structural split between AI safety and AI ethics. Using a bibliometric and co-authorship network analysis of 6,442 papers from twelve major ML and NLP conferences (2020-2025), we find that over 80% of collaborations occur within either the safety or ethics communities, and cross-field connectivity is highly concentrated: roughly 5% of papers account for more than 85% of bridging links. Removing a small number of these brokers sharply increases segregation, indicating that cross-disciplinary exchange depends on a handful of actors rather than broad, distributed collaboration. These results show that the safety-ethics divide is not only conceptual but institutional, with implications for research agendas, policy, and venues. We argue that integrating technical safety work with normative ethics--via shared benchmarks, cross-institutional venues, and mixed-method methodologies--is essential for building AI systems that are both robust and just.
Similar Papers
Disentangling AI Alignment: A Structured Taxonomy Beyond Safety and Ethics
Computers and Society
Helps AI follow rules and do good things.
Societal AI Research Has Become Less Interdisciplinary
Computation and Language
Computers now include ethics in their own work.
Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice
Computers and Society
Makes AI fairer and better for the planet.