Score: 1

Enhancing Large Language Models for End-to-End Circuit Analysis Problem Solving

Published: December 10, 2025 | arXiv ID: 2512.10159v1

By: Liangliang Chen, Weiyu Sun, Ying Zhang

Potential Business Impact:

Helps computers solve tricky electric circuit problems.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Large language models (LLMs) have shown strong performance in data-rich domains such as programming, but their reliability in engineering tasks remains limited. Circuit analysis -- requiring multimodal understanding and precise mathematical reasoning -- highlights these challenges. Although Gemini 2.5 Pro improves diagram interpretation and analog-circuit reasoning, it still struggles to consistently produce correct solutions when given both text and circuit diagrams. At the same time, engineering education needs scalable AI tools capable of generating accurate solutions for tasks such as automated homework feedback and question-answering. This paper presents an enhanced, end-to-end circuit problem solver built on Gemini 2.5 Pro. We first benchmark Gemini on a representative set of undergraduate circuit problems and identify two major failure modes: 1) circuit-recognition hallucinations, particularly incorrect source polarity detection, and 2) reasoning-process hallucinations, such as incorrect current directions. To address recognition errors, we integrate a fine-tuned YOLO detector and OpenCV processing to isolate voltage and current sources, enabling Gemini to re-identify source polarities from cropped images with near-perfect accuracy. To reduce reasoning errors, we introduce an ngspice-based verification loop in which Gemini generates a .cir file, ngspice simulates the circuit, and discrepancies trigger iterative regeneration with optional human-in-the-loop review. Across 83 problems, the proposed pipeline achieves a 97.59% success rate (81 correct solutions), substantially outperforming Gemini 2.5 Pro's original 79.52% accuracy. This system extends LLM capabilities for multimodal engineering problem-solving and supports the creation of high-quality educational datasets and AI-powered instructional tools.

Country of Origin
🇺🇸 United States

Repos / Data Links

Page Count
79 pages

Category
Computer Science:
Computers and Society