Enhancing Large Language Models for End-to-End Circuit Analysis Problem Solving
By: Liangliang Chen, Weiyu Sun, Ying Zhang
Potential Business Impact:
Helps computers solve tricky electric circuit problems.
Large language models (LLMs) have shown strong performance in data-rich domains such as programming, but their reliability in engineering tasks remains limited. Circuit analysis -- requiring multimodal understanding and precise mathematical reasoning -- highlights these challenges. Although Gemini 2.5 Pro improves diagram interpretation and analog-circuit reasoning, it still struggles to consistently produce correct solutions when given both text and circuit diagrams. At the same time, engineering education needs scalable AI tools capable of generating accurate solutions for tasks such as automated homework feedback and question-answering. This paper presents an enhanced, end-to-end circuit problem solver built on Gemini 2.5 Pro. We first benchmark Gemini on a representative set of undergraduate circuit problems and identify two major failure modes: 1) circuit-recognition hallucinations, particularly incorrect source polarity detection, and 2) reasoning-process hallucinations, such as incorrect current directions. To address recognition errors, we integrate a fine-tuned YOLO detector and OpenCV processing to isolate voltage and current sources, enabling Gemini to re-identify source polarities from cropped images with near-perfect accuracy. To reduce reasoning errors, we introduce an ngspice-based verification loop in which Gemini generates a .cir file, ngspice simulates the circuit, and discrepancies trigger iterative regeneration with optional human-in-the-loop review. Across 83 problems, the proposed pipeline achieves a 97.59% success rate (81 correct solutions), substantially outperforming Gemini 2.5 Pro's original 79.52% accuracy. This system extends LLM capabilities for multimodal engineering problem-solving and supports the creation of high-quality educational datasets and AI-powered instructional tools.
Similar Papers
Towards Optimal Circuit Generation: Multi-Agent Collaboration Meets Collective Intelligence
Hardware Architecture
AI designs computer chips as good as humans.
LLMs for Analog Circuit Design Continuum (ACDC)
Machine Learning (CS)
Helps computers design circuits, but they make mistakes.
Enhancing Large Language Models for Automated Homework Assessment in Undergraduate Circuit Analysis
Computers and Society
Helps AI grade student homework much better.