Optimal learning of quantum channels in diamond distance
By: Antonio Anna Mele, Lennart Bittel
Potential Business Impact:
Makes quantum computers work better by fixing errors.
Quantum process tomography, the task of estimating an unknown quantum channel, is a central problem in quantum information theory and a key primitive for characterising noisy quantum devices. A long-standing open question is to determine the optimal number of uses of an unknown channel required to learn it in diamond distance, the standard measure of worst-case distinguishability between quantum processes. Here we show that a quantum channel acting on a $d$-dimensional system can be estimated to accuracy $\varepsilon$ in diamond distance using $O(d^4/\varepsilon^2)$ channel uses. This scaling is essentially optimal, as it matches lower bounds up to logarithmic factors. Our analysis extends to channels with input and output dimensions $d_{\mathrm{in}}$ and $d_{\mathrm{out}}$ and Kraus rank at most $k$, for which $O(d_{\mathrm{in}} d_{\mathrm{out}} k/\varepsilon^2)$ channel uses suffice, interpolating between unitary and fully generic channels. As by-products, we obtain, to the best of our knowledge, the first essentially optimal strategies for operator-norm learning of binary POVMs and isometries, and we recover optimal trace-distance tomography for fixed-rank states. Our approach consists of using the channel only non-adaptively to prepare copies of the Choi state, purify them in parallel, perform sample-optimal pure-state tomography on the purifications, and analyse the resulting estimator directly in diamond distance via its semidefinite-program characterisation. While the sample complexity of state tomography in trace distance is by now well understood, our results finally settle the corresponding problem for quantum channels in diamond distance.
Similar Papers
Query-Optimal Estimation of Unitary Channels via Pauli Dimensionality
Quantum Physics
Learns secret quantum computer codes faster.
Query complexities of quantum channel discrimination and estimation: A unified approach
Quantum Physics
Makes quantum computers learn faster and more accurately.
Query Complexity of Classical and Quantum Channel Discrimination
Quantum Physics
Helps computers tell similar quantum signals apart.