R^2-HGP: A Double-Regularized Gaussian Process for Heterogeneous Transfer Learning
By: Duo Wang , Xinming Wang , Chao Wang and more
Potential Business Impact:
Helps computers learn from different kinds of data.
Multi-output Gaussian process (MGP) models have attracted significant attention for their flexibility and uncertainty-quantification capabilities, and have been widely adopted in multi-source transfer learning scenarios due to their ability to capture inter-task correlations. However, they still face several challenges in transfer learning. First, the input spaces of the source and target domains are often heterogeneous, which makes direct knowledge transfer difficult. Second, potential prior knowledge and physical information are typically ignored during heterogeneous transfer, hampering the utilization of domain-specific insights and leading to unstable mappings. Third, inappropriate information sharing among target and sources can easily lead to negative transfer. Traditional models fail to address these issues in a unified way. To overcome these limitations, this paper proposes a Double-Regularized Heterogeneous Gaussian Process framework (R^2-HGP). Specifically, a trainable prior probability mapping model is first proposed to align the heterogeneous input domains. The resulting aligned inputs are treated as latent variables, upon which a multi-source transfer GP model is constructed and the entire structure is integrated into a novel conditional variational autoencoder (CVAE) based framework. Physical insights is further incorporated as a regularization term to ensure that the alignment results adhere to known physical knowledge. Next, within the multi-source transfer GP model, a sparsity penalty is imposed on the transfer coefficients, enabling the model to adaptively select the most informative source outputs and suppress negative transfer. Extensive simulations and real-world engineering case studies validate the effectiveness of our R^2-HGP, demonstrating consistent superiority over state-of-the-art benchmarks across diverse evaluation metrics.
Similar Papers
Multi-Output Robust and Conjugate Gaussian Processes
Machine Learning (Stat)
Makes predictions better even with bad data.
Physics-augmented Multi-task Gaussian Process for Modeling Spatiotemporal Dynamics
Machine Learning (CS)
Predicts heart electricity flow better using physics.
Bayesian Bridge Gaussian Process Regression
Methodology
Finds important information in big data faster.