From Alternation to FPRAS: Toward a Complexity Classification of Approximate Counting
By: Markus Hecher, Matthias Lanzinger
Potential Business Impact:
Helps computers count hard things faster.
Counting problems are fundamental across mathematics and computer science. Among the most subtle are those whose associated decision problem is solvable in polynomial time, yet whose exact counting version appears intractable. For some such problems, however, one can still obtain efficient randomized approximation in the form of a fully polynomial randomized approximation scheme (FPRAS). Existing proofs of FPRAS existence are often highly technical and problem-specific, offering limited insight into a more systematic complexity-theoretic account of approximability. In this work, we propose a machine-based framework for establishing the existence of an FPRAS beyond previous uniform criteria. Our starting point is alternating computation: we introduce a counting model obtained by equipping alternating Turing machines with a transducer-style output mechanism, and we use it to define a corresponding counting class spanALP. We show that every problem in spanALP admits an FPRAS, yielding a reusable sufficient condition that can be applied via reductions to alternating logspace, polynomial-time computation with output. We situate spanALP in the counting complexity landscape as strictly between #L and TotP (assuming RP $\neq$ NP) and observe interesting conceptual and technical gaps in the current machinery counting complexity. Moreover, as an illustrative application, we obtain an FPRAS for counting answers to counting the answers Dyck-constrained path queries in edge-labeled graphs, i.e., counting the number of distinct labelings realized by s-t walks whose label sequence is well-formed with respect to a Dyck-like language. To our knowledge, no FPRAS was previously known for this setting. We expect the alternating-transducer characterization to provide a broadly applicable tool for establishing FPRAS existence for further counting problems.
Similar Papers
Counting and Sampling Traces in Regular Languages
Formal Languages and Automata Theory
Counts and samples complex computer paths faster.
Approximate Counting in Local Lemma Regimes
Data Structures and Algorithms
Counts hard-to-count things much faster.
Counting Martingales for Measure and Dimension in Complexity Classes
Computational Complexity
Makes computers solve harder problems faster.