Equivalent Instances for Scheduling and Packing Problems
By: Klaus Jansen, Kai Kahler, Corinna Wambsganz
Potential Business Impact:
Makes hard math problems easier to solve.
Two instances $(I,k)$ and $(I',k')$ of a parameterized problem $P$ are equivalent if they have the same set of solutions (static equivalent) or if the set of solutions of $(I,k)$ can be constructed by the set of solutions for $(I',k')$ and some computable pre-solutions. If the algorithm constructing such a (static) equivalent instance whose size is polynomial bounded runs in fixed-parameter tractable (FPT) time, we say that there exists a (static) equivalent instance for this problem. In this paper we present (static) equivalent instances for Scheduling and Knapsack problems. We improve the bound for the $\ell_1$-norm of an equivalent vector given by Eisenbrand, Hunkenschröder, Klein, Koutecký, Levin, and Onn and show how this yields equivalent instances for integer linear programs (ILPs) and related problems. We obtain an $O(MN^2\log(NU))$ static equivalent instance for feasibility ILPs where $M$ is the number of constraints, $N$ is the number of variables and $U$ is an upper bound for the $\ell_\infty$-norm of the smallest feasible solution. With this, we get an $O(n^2\log(n))$ static equivalent instance for Knapsack where $n$ is the number of items. Moreover, we give an $O(M^2N\log(NMΔ))$ kernel for feasibility ILPs where $Δ$ is an upper bound for the $\ell_\infty$-norm of the given constraint matrix. Using balancing results by Knop et al., the ConfILP and a proximity result by Eisenbrand and Weismantel we give an $O(d^2\log(p_{\max}))$ equivalent instance for LoadBalancing, a generalization of scheduling problems. Here $d$ is the number of different processing times and $p_{\max}$ is the largest processing time.
Similar Papers
Designing Compact ILPs via Fast Witness Verification
Data Structures and Algorithms
Solves hard computer puzzles using math rules.
FPT-Approximability of Stable Matching Problems
CS and Game Theory
Finds best matches even with tricky choices.
Parameterized complexity of scheduling unit-time jobs with generalized precedence constraints
Optimization and Control
Helps computers finish jobs faster with tricky rules.