Score: 1

Generalized Spherical Neural Operators: Green's Function Formulation

Published: December 11, 2025 | arXiv ID: 2512.10723v1

By: Hao Tang, Hao Chen, Chao Li

Potential Business Impact:

Helps computers understand weather on a round Earth.

Business Areas:
Geospatial Data and Analytics, Navigation and Mapping

Neural operators offer powerful approaches for solving parametric partial differential equations, but extending them to spherical domains remains challenging due to the need to preserve intrinsic geometry while avoiding distortions that break rotational consistency. Existing spherical operators rely on rotational equivariance but often lack the flexibility for real-world complexity. We propose a general operator-design framework based on the designable spherical Green's function and its harmonic expansion, establishing a solid operator-theoretic foundation for spherical learning. Based on this, we propose an absolute and relative position-dependent Green's function that enables flexible balance of equivariance and invariance for real-world modeling. The resulting operator, Green's-function Spherical Neural Operator (GSNO) with a novel spectral learning method, can adapt to anisotropic, constraint-rich systems while retaining spectral efficiency. To exploit GSNO, we develop GSHNet, a hierarchical architecture that combines multi-scale spectral modeling with spherical up-down sampling, enhancing global feature representation. Evaluations on diffusion MRI, shallow water dynamics, and global weather forecasting, GSNO and GSHNet consistently outperform state-of-the-art methods. Our results position GSNO as a principled and general framework for spherical operator learning, bridging rigorous theory with real-world complexity.

Page Count
23 pages

Category
Computer Science:
Machine Learning (CS)