Score: 0

The Vekua Layer: Exact Physical Priors for Implicit Neural Representations via Generalized Analytic Functions

Published: December 11, 2025 | arXiv ID: 2512.11138v1

By: Vladimer Khasia

Implicit Neural Representations (INRs) have emerged as a powerful paradigm for parameterizing physical fields, yet they often suffer from spectral bias and the computational expense of non-convex optimization. We introduce the Vekua Layer (VL), a differentiable spectral method grounded in the classical theory of Generalized Analytic Functions. By restricting the hypothesis space to the kernel of the governing differential operator -- specifically utilizing Harmonic and Fourier-Bessel bases -- the VL transforms the learning task from iterative gradient descent to a strictly convex least-squares problem solved via linear projection. We evaluate the VL against Sinusoidal Representation Networks (SIRENs) on homogeneous elliptic Partial Differential Equations (PDEs). Our results demonstrate that the VL achieves machine precision ($\text{MSE} \approx 10^{-33}$) on exact reconstruction tasks and exhibits superior stability in the presence of incoherent sensor noise ($\text{MSE} \approx 0.03$), effectively acting as a physics-informed spectral filter. Furthermore, we show that the VL enables "holographic" extrapolation of global fields from partial boundary data via analytic continuation, a capability absent in standard coordinate-based approximations.

Category
Computer Science:
Machine Learning (CS)