Score: 0

Image Tiling for High-Resolution Reasoning: Balancing Local Detail with Global Context

Published: December 11, 2025 | arXiv ID: 2512.11167v1

By: Anatole Jacquin de Margerie, Alexis Roger, Irina Rish

Reproducibility remains a cornerstone of scientific progress, yet complex multimodal models often lack transparent implementation details and accessible training infrastructure. In this work, we present a detailed reproduction and critical analysis of the Monkey Vision-Language Model (VLM) (Li et al. 2023b) published in CVPR24, a recent approach to high-resolution image understanding via image tiling. The original paper proposed splitting large images into tiles to recover fine-grained visual details while maintaining computational efficiency. Our study replicates this strategy using open checkpoints and reimplements the training pipeline. We confirm the key finding of the original Monkey VLM work, namely that tiling effectively recovers local details. We then extend this work further, by investigating the effect of the inclusion of the global context, which provide practical insights for future high-resolution multimodal modeling. However, we also report deviations in the results, with the magnitude of these effects depending heavily on task type and tile granularity.

Category
Computer Science:
CV and Pattern Recognition