Shortest Paths on Convex Polyhedral Surfaces
By: Haitao Wang
Potential Business Impact:
Finds shortest paths on 3D shapes faster.
Let $\mathcal{P}$ be the surface of a convex polyhedron with $n$ vertices. We consider the two-point shortest path query problem for $\mathcal{P}$: Constructing a data structure so that given any two query points $s$ and $t$ on $\mathcal{P}$, a shortest path from $s$ to $t$ on $\mathcal{P}$ can be computed efficiently. To achieve $O(\log n)$ query time (for computing the shortest path length), the previously best result uses $O(n^{8+ε})$ preprocessing time and space [Aggarwal, Aronov, O'Rourke, and Schevon, SICOMP 1997], where $ε$ is an arbitrarily small positive constant. In this paper, we present a new data structure of $O(n^{6+ε})$ preprocessing time and space, with $O(\log n)$ query time. For a special case where one query point is required to lie on one of the edges of $\mathcal{P}$, the previously best work uses $O(n^{6+ε})$ preprocessing time and space to achieve $O(\log n)$ query time. We improve the preprocessing time and space to $O(n^{5+ε})$, with $O(\log n)$ query time. Furthermore, we present a new algorithm to compute the exact set of shortest path edge sequences of $\mathcal{P}$, which are known to be $Θ(n^4)$ in number and have a total complexity of $Θ(n^5)$ in the worst case. The previously best algorithm for the problem takes roughly $O(n^6\log n\log^*n)$ time, while our new algorithm runs in $O(n^{5+ε})$ time.
Similar Papers
Local Routing on a Convex Polytope in R^3
Computational Geometry
Finds shortest paths on 3D shapes quickly.
Shortest Paths, Convexity, and Treewidth in Regular Hyperbolic Tilings
Computational Geometry
Finds shortest paths in complex maps faster.
The Road to the Closest Point is Paved by Good Neighbors
Computational Geometry
Finds nearby points much faster.