Score: 0

Hyperbolic Gaussian Blurring Mean Shift: A Statistical Mode-Seeking Framework for Clustering in Curved Spaces

Published: December 12, 2025 | arXiv ID: 2512.11448v1

By: Arghya Pratihar , Arnab Seal , Swagatam Das and more

Clustering is a fundamental unsupervised learning task for uncovering patterns in data. While Gaussian Blurring Mean Shift (GBMS) has proven effective for identifying arbitrarily shaped clusters in Euclidean space, it struggles with datasets exhibiting hierarchical or tree-like structures. In this work, we introduce HypeGBMS, a novel extension of GBMS to hyperbolic space. Our method replaces Euclidean computations with hyperbolic distances and employs Möbius-weighted means to ensure that all updates remain consistent with the geometry of the space. HypeGBMS effectively captures latent hierarchies while retaining the density-seeking behavior of GBMS. We provide theoretical insights into convergence and computational complexity, along with empirical results that demonstrate improved clustering quality in hierarchical datasets. This work bridges classical mean-shift clustering and hyperbolic representation learning, offering a principled approach to density-based clustering in curved spaces. Extensive experimental evaluations on $11$ real-world datasets demonstrate that HypeGBMS significantly outperforms conventional mean-shift clustering methods in non-Euclidean settings, underscoring its robustness and effectiveness.

Category
Computer Science:
Machine Learning (CS)