AI-MASLD Metabolic Dysfunction and Information Steatosis of Large Language Models in Unstructured Clinical Narratives
By: Yuan Shen, Xiaojun Wu, Linghua Yu
This study aims to simulate real-world clinical scenarios to systematically evaluate the ability of Large Language Models (LLMs) to extract core medical information from patient chief complaints laden with noise and redundancy, and to verify whether they exhibit a functional decline analogous to Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). We employed a cross-sectional analysis design based on standardized medical probes, selecting four mainstream LLMs as research subjects: GPT-4o, Gemini 2.5, DeepSeek 3.1, and Qwen3-Max. An evaluation system comprising twenty medical probes across five core dimensions was used to simulate a genuine clinical communication environment. All probes had gold-standard answers defined by clinical experts and were assessed via a double-blind, inverse rating scale by two independent clinicians. The results show that all tested models exhibited functional defects to varying degrees, with Qwen3-Max demonstrating the best overall performance and Gemini 2.5 the worst. Under conditions of extreme noise, most models experienced a functional collapse. Notably, GPT-4o made a severe misjudgment in the risk assessment for pulmonary embolism (PE) secondary to deep vein thrombosis (DVT). This research is the first to empirically confirm that LLMs exhibit features resembling metabolic dysfunction when processing clinical information, proposing the innovative concept of "AI-Metabolic Dysfunction-Associated Steatotic Liver Disease (AI-MASLD)". These findings offer a crucial safety warning for the application of Artificial Intelligence (AI) in healthcare, emphasizing that current LLMs must be used as auxiliary tools under human expert supervision, as there remains a significant gap between their theoretical knowledge and practical clinical application.
Similar Papers
Automated Clinical Problem Detection from SOAP Notes using a Collaborative Multi-Agent LLM Architecture
Artificial Intelligence
Helps doctors find sickness faster by teamwork.
Performance of Large Language Models in Supporting Medical Diagnosis and Treatment
Computation and Language
AI helps doctors diagnose illnesses and plan treatments.
Towards Robust and Fair Next Visit Diagnosis Prediction under Noisy Clinical Notes with Large Language Models
Computation and Language
Makes AI doctors more trustworthy with messy notes.