Elastic-Net Multiple Kernel Learning: Combining Multiple Data Sources for Prediction
By: Janaina Mourão-Miranda , Zakria Hussain , Konstantinos Tsirlis and more
Multiple Kernel Learning (MKL) models combine several kernels in supervised and unsupervised settings to integrate multiple data representations or sources, each represented by a different kernel. MKL seeks an optimal linear combination of base kernels that maximizes a generalized performance measure under a regularization constraint. Various norms have been used to regularize the kernel weights, including $l1$, $l2$ and $lp$, as well as the "elastic-net" penalty, which combines $l1$- and $l2$-norm to promote both sparsity and the selection of correlated kernels. This property makes elastic-net regularized MKL (ENMKL) especially valuable when model interpretability is critical and kernels capture correlated information, such as in neuroimaging. Previous ENMKL methods have followed a two-stage procedure: fix kernel weights, train a support vector machine (SVM) with the weighted kernel, and then update the weights via gradient descent, cutting-plane methods, or surrogate functions. Here, we introduce an alternative ENMKL formulation that yields a simple analytical update for the kernel weights. We derive explicit algorithms for both SVM and kernel ridge regression (KRR) under this framework, and implement them in the open-source Pattern Recognition for Neuroimaging Toolbox (PRoNTo). We evaluate these ENMKL algorithms against $l1$-norm MKL and against SVM (or KRR) trained on the unweighted sum of kernels across three neuroimaging applications. Our results show that ENMKL matches or outperforms $l1$-norm MKL in all tasks and only underperforms standard SVM in one scenario. Crucially, ENMKL produces sparser, more interpretable models by selectively weighting correlated kernels.
Similar Papers
Sparse Multiple Kernel Learning: Alternating Best Response and Semidefinite Relaxations
Machine Learning (Stat)
Chooses best tools to make computer learning better.
Sparse Multiple Kernel Learning: Alternating Best Response and Semidefinite Relaxations
Machine Learning (Stat)
Chooses best tools for smarter computer learning.
Interpretable Kernels
Machine Learning (Stat)
Makes AI explain its decisions using original data.