Bridging Streaming Continual Learning via In-Context Large Tabular Models
By: Afonso Lourenço , João Gama , Eric P. Xing and more
In streaming scenarios, models must learn continuously, adapting to concept drifts without erasing previously acquired knowledge. However, existing research communities address these challenges in isolation. Continual Learning (CL) focuses on long-term retention and mitigating catastrophic forgetting, often without strict real-time constraints. Stream Learning (SL) emphasizes rapid, efficient adaptation to high-frequency data streams, but typically neglects forgetting. Recent efforts have tried to combine these paradigms, yet no clear algorithmic overlap exists. We argue that large in-context tabular models (LTMs) provide a natural bridge for Streaming Continual Learning (SCL). In our view, unbounded streams should be summarized on-the-fly into compact sketches that can be consumed by LTMs. This recovers the classical SL motivation of compressing massive streams with fixed-size guarantees, while simultaneously aligning with the experience-replay desiderata of CL. To clarify this bridge, we show how the SL and CL communities implicitly adopt a divide-to-conquer strategy to manage the tension between plasticity (performing well on the current distribution) and stability (retaining past knowledge), while also imposing a minimal complexity constraint that motivates diversification (avoiding redundancy in what is stored) and retrieval (re-prioritizing past information when needed). Within this perspective, we propose structuring SCL with LTMs around two core principles of data selection for in-context learning: (1) distribution matching, which balances plasticity and stability, and (2) distribution compression, which controls memory size through diversification and retrieval mechanisms.
Similar Papers
Task-Core Memory Management and Consolidation for Long-term Continual Learning
Machine Learning (CS)
Keeps computers remembering old lessons while learning new ones.
Online Continual Graph Learning
Machine Learning (CS)
Teaches computers to learn new things without forgetting.
When Continue Learning Meets Multimodal Large Language Model: A Survey
Machine Learning (CS)
Helps AI learn new things without forgetting old ones.