Score: 0

Stochastics of shapes and Kunita flows

Published: December 12, 2025 | arXiv ID: 2512.11676v1

By: Stefan Sommer, Gefan Yang, Elizabeth Louise Baker

Stochastic processes of evolving shapes are used in applications including evolutionary biology, where morphology changes stochastically as a function of evolutionary processes. Due to the non-linear and often infinite-dimensional nature of shape spaces, the mathematical construction of suitable stochastic shape processes is far from immediate. We define and formalize properties that stochastic shape processes should ideally satisfy to be compatible with the shape structure, and we link this to Kunita flows that, when acting on shape spaces, induce stochastic processes that satisfy these criteria by their construction. We couple this with a survey of other relevant shape stochastic processes and show how bridge sampling techniques can be used to condition shape stochastic processes on observed data thereby allowing for statistical inference of parameters of the stochastic dynamics.

Category
Mathematics:
Probability