Score: 0

Evaluating Cooperative Resilience in Multiagent Systems: A Comparison Between Humans and LLMs

Published: December 12, 2025 | arXiv ID: 2512.11689v1

By: Manuela Chacon-Chamorro , Juan Sebastián Pinzón , Rubén Manrique and more

This paper presents a comparative analysis of cooperative resilience in multi-agent systems, defined as the ability to anticipate, resist, recover from, and transform to disruptive events that affect collective well-being. We focus on mixed-motive social dilemmas instantiated as a \textit{Tragedy of the Commons} environment from the Melting Pot suite, where we systematically compare human groups and Large Language Model (LLM)-based agents, each evaluated with and without explicit communication. Cooperative resilience is assessed under a continuously disruptive condition induced by a persistent unsustainable consumption bot, together with intermittent environmental shocks implemented as stochastic removal of shared resources across scenarios. This experimental design establishes a benchmark for cooperative resilience across agent architectures and interaction modalities, constituting a key step toward systematically comparing humans and LLM-based agents. Using this framework, we find that human groups with communication achieve the highest cooperative resilience compared to all other groups. Communication also improves the resilience of LLM agents, but their performance remains below human levels. Motivated by the performance of humans, we further examine a long-horizon setting with harsher environmental conditions, where humans sustain the shared resource and maintain high resilience in diverse disruption scenarios. Together, these results suggest that human decision-making under adverse social conditions can inform the design of artificial agents that promote prosocial and resilient behaviors.

Category
Computer Science:
Multiagent Systems