Covariate-assisted graph matching
By: Trisha Dawn, Jesús Arroyo
Data integration is essential across diverse domains, from historical records to biomedical research, facilitating joint statistical inference. A crucial initial step in this process involves merging multiple data sources based on matching individual records, often in the absence of unique identifiers. When the datasets are networks, this problem is typically addressed through graph matching methodologies. For such cases, auxiliary features or covariates associated with nodes or edges can be instrumental in achieving improved accuracy. However, most existing graph matching techniques do not incorporate this information, limiting their performance against non-identifiable and erroneous matches. To overcome these limitations, we propose two novel covariate-assisted seeded graph matching methods, where a partial alignment for a set of nodes, called seeds, is known. The first one solves a quadratic assignment problem (QAP) over the whole graph, while the second one only leverages the local neighborhood structure of seed nodes for computational scalability. Both methods are grounded in a conditional modeling framework, where elements of one graph's adjacency matrix are modeled using a generalized linear model (GLM), given the other graph and the available covariates. We establish theoretical guarantees for model estimation error and exact recovery of the solution of the QAP. The effectiveness of our methods is demonstrated through numerical experiments and in an application to matching the statistics academic genealogy and the collaboration networks. By leveraging additional covariates, we achieve improved alignment accuracy. Our work highlights the power of integrating covariate information in the classical graph matching setup, offering a practical and improved framework for combining network data with wide-ranging applications.
Similar Papers
Covariate Connectivity Combined Clustering for Weighted Networks
Methodology
Finds hidden groups in connected data.
Contextual Graph Embeddings: Accounting for Data Characteristics in Heterogeneous Data Integration
Databases
Helps computers combine different data faster.
A customizable inexact subgraph matching algorithm for attributed graphs
Data Structures and Algorithms
Finds hidden patterns in messy data relationships.