Not All Factors Crowd Equally: Modeling, Measuring, and Trading on Alpha Decay
By: Chorok Lee
Potential Business Impact:
Predicts when stock prices will crash.
We derive a specific functional form for factor alpha decay -- hyperbolic decay alpha(t) = K/(1+lambda*t) -- from a game-theoretic equilibrium model, and test it against linear and exponential alternatives. Using eight Fama-French factors (1963--2024), we find: (1) Hyperbolic decay fits mechanical factors. Momentum exhibits clear hyperbolic decay (R^2 = 0.65), outperforming linear (0.51) and exponential (0.61) baselines -- validating the equilibrium foundation. (2) Not all factors crowd equally. Mechanical factors (momentum, reversal) fit the model; judgment-based factors (value, quality) do not -- consistent with a signal-ambiguity taxonomy paralleling Hua and Sun's "barriers to entry." (3) Crowding accelerated post-2015. Out-of-sample, the model over-predicts remaining alpha (0.30 vs. 0.15), correlating with factor ETF growth (rho = -0.63). (4) Average returns are efficiently priced. Crowding-based factor selection fails to generate alpha (Sharpe: 0.22 vs. 0.39 factor momentum benchmark). (5) Crowding predicts tail risk. Out-of-sample (2001--2024), crowded reversal factors show 1.7--1.8x higher crash probability (bottom decile returns), while crowded momentum shows lower crash risk (0.38x, p = 0.006). Our findings extend equilibrium crowding models (DeMiguel et al.) to temporal dynamics and show that crowding predicts crashes, not means -- useful for risk management, not alpha generation.
Similar Papers
Discovery of a 13-Sharpe OOS Factor: Drift Regimes Unlock Hidden Cross-Sectional Predictability
Trading & Market Microstructure
Makes your money grow much faster by picking stocks.
Data-generating process and time-series asset pricing
General Finance
Fixes how money growth is measured.
Dynamic Factor Analysis of Price Movements in the Philippine Stock Exchange
Statistical Finance
Explains stock market ups and downs better.