A Novel Patch-Based TDA Approach for Computed Tomography
By: Dashti A. Ali , Aras T. Asaad , Jacob J. Peoples and more
Potential Business Impact:
Finds hidden patterns in medical scans faster.
The development of machine learning (ML) models based on computed tomography (CT) imaging modality has been a major focus of recent research in the medical imaging domain. Incorporating robust feature engineering approach can highly improve the performance of these models. Topological data analysis (TDA), a recent development based on the mathematical field of algebraic topology, mainly focuses on the data from a topological perspective, extracting deeper insight and higher dimensional structures from the data. Persistent homology (PH), a fundamental tool in the area of TDA, can extract topological features such as connected components, cycles and voids from the data. A popular approach to construct PH from 3D CT images is to utilize the 3D cubical complex filtration, a method adapted for grid-structured data. However, this approach may not always yield the best performance and can suffer from computational complexity with higher resolution CT images. This study introduces a novel patch-based PH construction approach tailored for volumetric medical imaging data, in particular CT modality. A wide range of experiments has been conducted on several datasets of 3D CT images to comprehensively analyze the performance of the proposed method with various parameters and benchmark it against the 3D cubical complex algorithm. Our results highlight the dominance of the patch-based TDA approach in terms of both classification performance and time-efficiency. The proposed approach outperformed the cubical complex method, achieving average improvement of 10.38%, 6.94%, 2.06%, 11.58%, and 8.51% in accuracy, AUC, sensitivity, specificity, and F1 score, respectively, across all datasets. Finally, we provide a convenient python package, Patch-TDA, to facilitate the utilization of the proposed approach.
Similar Papers
Challenges in 3D Data Synthesis for Training Neural Networks on Topological Features
CV and Pattern Recognition
Creates 3D shapes to teach computers about holes.
Tracking Temporal Evolution of Topological Features in Image Data
Methodology
Finds patterns in changing pictures over time.
Commutative algebra-enhanced topological data analysis
Computational Geometry
Finds hidden patterns in data more deeply.