Score: 0

Understanding Trust Toward Human versus AI-generated Health Information through Behavioral and Physiological Sensing

Published: December 13, 2025 | arXiv ID: 2512.12348v1

By: Xin Sun , Rongjun Ma , Shu Wei and more

As AI-generated health information proliferates online and becomes increasingly indistinguishable from human-sourced information, it becomes critical to understand how people trust and label such content, especially when the information is inaccurate. We conducted two complementary studies: (1) a mixed-methods survey (N=142) employing a 2 (source: Human vs. LLM) $\times$ 2 (label: Human vs. AI) $\times$ 3 (type: General, Symptom, Treatment) design, and (2) a within-subjects lab study (N=40) incorporating eye-tracking and physiological sensing (ECG, EDA, skin temperature). Participants were presented with health information varying by source-label combinations and asked to rate their trust, while their gaze behavior and physiological signals were recorded. We found that LLM-generated information was trusted more than human-generated content, whereas information labeled as human was trusted more than that labeled as AI. Trust remained consistent across information types. Eye-tracking and physiological responses varied significantly by source and label. Machine learning models trained on these behavioral and physiological features predicted binary self-reported trust levels with 73% accuracy and information source with 65% accuracy. Our findings demonstrate that adding transparency labels to online health information modulates trust. Behavioral and physiological features show potential to verify trust perceptions and indicate if additional transparency is needed.

Category
Computer Science:
Human-Computer Interaction