Deep Hedging with Reinforcement Learning: A Practical Framework for Option Risk Management
By: Travon Lucius , Christian Koch , Jacob Starling and more
Potential Business Impact:
Teaches computers to trade stocks better.
We present a reinforcement-learning (RL) framework for dynamic hedging of equity index option exposures under realistic transaction costs and position limits. We hedge a normalized option-implied equity exposure (one unit of underlying delta, offset via SPY) by trading the underlying index ETF, using the option surface and macro variables only as state information and not as a direct pricing engine. Building on the "deep hedging" paradigm of Buehler et al. (2019), we design a leak-free environment, a cost-aware reward function, and a lightweight stochastic actor-critic agent trained on daily end-of-day panel data constructed from SPX/SPY implied volatility term structure, skew, realized volatility, and macro rate context. On a fixed train/validation/test split, the learned policy improves risk-adjusted performance versus no-hedge, momentum, and volatility-targeting baselines (higher point-estimate Sharpe); only the GAE policy's test-sample Sharpe is statistically distinguishable from zero, although confidence intervals overlap with a long-SPY benchmark so we stop short of claiming formal dominance. Turnover remains controlled and the policy is robust to doubled transaction costs. The modular codebase, comprising a data pipeline, simulator, and training scripts, is engineered for extensibility to multi-asset overlays, alternative objectives (e.g., drawdown or CVaR), and intraday data. From a portfolio management perspective, the learned overlay is designed to sit on top of an existing SPX or SPY allocation, improving the portfolio's mean-variance trade-off with controlled turnover and drawdowns. We discuss practical implications for portfolio overlays and outline avenues for future work.
Similar Papers
Learning to Hedge Swaptions
Risk Management
Teaches computers to manage money risks better.
Application of Deep Reinforcement Learning to At-the-Money S&P 500 Options Hedging
Computational Finance
Helps traders make smarter money choices.
Deep Hedging with Options Using the Implied Volatility Surface
Risk Management
Makes stock market bets safer and more profitable.