Optimal Mistake Bounds for Transductive Online Learning
By: Zachary Chase , Steve Hanneke , Shay Moran and more
We resolve a 30-year-old open problem concerning the power of unlabeled data in online learning by tightly quantifying the gap between transductive and standard online learning. In the standard setting, the optimal mistake bound is characterized by the Littlestone dimension $d$ of the concept class $H$ (Littlestone 1987). We prove that in the transductive setting, the mistake bound is at least $Ω(\sqrt{d})$. This constitutes an exponential improvement over previous lower bounds of $Ω(\log\log d)$, $Ω(\sqrt{\log d})$, and $Ω(\log d)$, due respectively to Ben-David, Kushilevitz, and Mansour (1995, 1997) and Hanneke, Moran, and Shafer (2023). We also show that this lower bound is tight: for every $d$, there exists a class of Littlestone dimension $d$ with transductive mistake bound $O(\sqrt{d})$. Our upper bound also improves upon the best known upper bound of $(2/3)d$ from Ben-David, Kushilevitz, and Mansour (1997). These results establish a quadratic gap between transductive and standard online learning, thereby highlighting the benefit of advance access to the unlabeled instance sequence. This contrasts with the PAC setting, where transductive and standard learning exhibit similar sample complexities.
Similar Papers
Tradeoffs between Mistakes and ERM Oracle Calls in Online and Transductive Online Learning
Machine Learning (CS)
Teaches computers to learn with less information.
Private Learning of Littlestone Classes, Revisited
Machine Learning (Stat)
Makes learning private and faster for computers.
Mistake-bounded online learning with operation caps
Machine Learning (CS)
Teaches computers to learn with fewer steps.