Score: 0

Causal inference and model explainability tools for retail

Published: December 14, 2025 | arXiv ID: 2512.12605v1

By: Pranav Gupta, Nithin Surendran

Most major retailers today have multiple divisions focused on various aspects, such as marketing, supply chain, online customer experience, store customer experience, employee productivity, and vendor fulfillment. They also regularly collect data corresponding to all these aspects as dashboards and weekly/monthly/quarterly reports. Although several machine learning and statistical techniques have been in place to analyze and predict key metrics, such models typically lack interpretability. Moreover, such techniques also do not allow the validation or discovery of causal links. In this paper, we aim to provide a recipe for applying model interpretability and causal inference for deriving sales insights. In this paper, we review the existing literature on causal inference and interpretability in the context of problems in e-commerce and retail, and apply them to a real-world dataset. We find that an inherently explainable model has a lower variance of SHAP values, and show that including multiple confounders through a double machine learning approach allows us to get the correct sign of causal effect.

Category
Computer Science:
Machine Learning (CS)