Score: 0

Efficient Vision-Language Reasoning via Adaptive Token Pruning

Published: December 14, 2025 | arXiv ID: 2512.12701v1

By: Xue Li, Xiaonan Song, Henry Hu

Potential Business Impact:

Makes AI understand pictures faster and cheaper.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Real-world deployment of Vision-Language Models (VLMs) is hindered by high computational demands, as existing architectures inefficiently process all tokens uniformly. We introduce Adaptive Token Pruning (ATP), a dynamic inference mechanism that retains only the most informative tokens based on contextual relevance. ATP operates at the vision-language interface, assigning a hybrid importance score combining ViT CLS attention (intra-modal saliency) and CLIP text-image similarity (inter-modal relevance) to keep top-K tokens for the LLM. Unlike static compression, ATP adapts to each input without modifying the backbone. Proposed as a lightweight gating module, ATP is compatible with popular backbones like BLIP-2, LLaVA, and Flamingo. Preliminary evaluations across VQAv2, GQA, and COCO indicate that ATP reduces inference FLOPs by around 40% and achieves roughly 1.5x speedups in end-to-end latency with negligible accuracy loss (less than 1%). Qualitative analyses suggest ATP preserves visual grounding and enhances interpretability. Beyond efficiency, we investigate robustness under corruptions; observations suggest adaptive pruning suppresses spurious correlations, improving stability. These findings imply that resource-constrained inference and model reliability are not competing objectives. Finally, we discuss ATP's role in efficient multimodal edge computing pipelines.

Page Count
10 pages

Category
Computer Science:
CV and Pattern Recognition