Complexity of Markov Chain Monte Carlo for Generalized Linear Models
By: Martin Chak, Giacomo Zanella
Markov Chain Monte Carlo (MCMC), Laplace approximation (LA) and variational inference (VI) methods are popular approaches to Bayesian inference, each with trade-offs between computational cost and accuracy. However, a theoretical understanding of these differences is missing, particularly when both the sample size $n$ and the dimension $d$ are large. LA and Gaussian VI are justified by Bernstein-von Mises (BvM) theorems, and recent work has derived the characteristic condition $n\gg d^2$ for their validity, improving over the condition $n\gg d^3$. In this paper, we show for linear, logistic and Poisson regression that for $n\gtrsim d$, MCMC attains the same complexity scaling in $n$, $d$ as first-order optimization algorithms, up to sub-polynomial factors. Thus MCMC is competitive with LA and Gaussian VI in complexity, under a scaling between $n$ and $d$ more general than BvM regimes. Our complexities apply to appropriately scaled priors that are not necessarily Gaussian-tailed, including Student-$t$ and flat priors, with log-posteriors that are not necessarily globally concave or gradient-Lipschitz.
Similar Papers
A Scalable Variational Bayes Approach for Fitting Non-Conjugate Spatial Generalized Linear Mixed Models via Basis Expansions
Methodology
Lets computers quickly learn from big, messy data.
To MCMC or not to MCMC: Evaluating non-MCMC methods for Bayesian penalized regression
Computation
Faster computer math helps predict things better.
Modified Delayed Acceptance MCMC for Quasi-Bayesian Inference with Linear Moment Conditions
Computation
Makes computer models learn faster and more accurately.