Score: 0

SPAR: Session-based Pipeline for Adaptive Retrieval on Legacy File Systems

Published: December 15, 2025 | arXiv ID: 2512.12938v1

By: Duy A. Nguyen , Hai H. Do , Minh Doan and more

The ability to extract value from historical data is essential for enterprise decision-making. However, much of this information remains inaccessible within large legacy file systems that lack structured organization and semantic indexing, making retrieval and analysis inefficient and error-prone. We introduce SPAR (Session-based Pipeline for Adaptive Retrieval), a conceptual framework that integrates Large Language Models (LLMs) into a Retrieval-Augmented Generation (RAG) architecture specifically designed for legacy enterprise environments. Unlike conventional RAG pipelines, which require costly construction and maintenance of full-scale vector databases that mirror the entire file system, SPAR employs a lightweight two-stage process: a semantic Metadata Index is first created, after which session-specific vector databases are dynamically generated on demand. This design reduces computational overhead while improving transparency, controllability, and relevance in retrieval. We provide a theoretical complexity analysis comparing SPAR with standard LLM-based RAG pipelines, demonstrating its computational advantages. To validate the framework, we apply SPAR to a synthesized enterprise-scale file system containing a large corpus of biomedical literature, showing improvements in both retrieval effectiveness and downstream model accuracy. Finally, we discuss design trade-offs and outline open challenges for deploying SPAR across diverse enterprise settings.

Category
Computer Science:
Information Retrieval