Score: 1

UniVCD: A New Method for Unsupervised Change Detection in the Open-Vocabulary Era

Published: December 15, 2025 | arXiv ID: 2512.13089v1

By: Ziqiang Zhu, Bowei Yang

Potential Business Impact:

Finds changes in pictures without needing labels.

Business Areas:
Image Recognition Data and Analytics, Software

Change detection (CD) identifies scene changes from multi-temporal observations and is widely used in urban development and environmental monitoring. Most existing CD methods rely on supervised learning, making performance strongly dataset-dependent and incurring high annotation costs; they typically focus on a few predefined categories and generalize poorly to diverse scenes. With the rise of vision foundation models such as SAM2 and CLIP, new opportunities have emerged to relax these constraints. We propose Unified Open-Vocabulary Change Detection (UniVCD), an unsupervised, open-vocabulary change detection method built on frozen SAM2 and CLIP. UniVCD detects category-agnostic changes across diverse scenes and imaging geometries without any labeled data or paired change images. A lightweight feature alignment module is introduced to bridge the spatially detailed representations from SAM2 and the semantic priors from CLIP, enabling high-resolution, semantically aware change estimation while keeping the number of trainable parameters small. On top of this, a streamlined post-processing pipeline is further introduced to suppress noise and pseudo-changes, improving the detection accuracy for objects with well-defined boundaries. Experiments on several public BCD (Binary Change Detection) and SCD (Semantic Change Detection) benchmarks show that UniVCD achieves consistently strong performance and matches or surpasses existing open-vocabulary CD methods in key metrics such as F1 and IoU. The results demonstrate that unsupervised change detection with frozen vision foundation models and lightweight multi-modal alignment is a practical and effective paradigm for open-vocabulary CD. Code and pretrained models will be released at https://github.com/Die-Xie/UniVCD.

Country of Origin
🇨🇳 China

Repos / Data Links

Page Count
10 pages

Category
Computer Science:
CV and Pattern Recognition