MicroPhaseNO: Adapting an Earthquake-Trained Phase Neural Operator for Microseismic Phase Picking
By: Ayrat Abdullin , Umair bin Waheed , Leo Eisner and more
Seismic phase picking is very often used for microseismic monitoring and subsurface imaging. Traditional manual processing is not feasible for either real-time applications or large arrays. Deep learning-based pickers trained on large earthquake catalogs offer an automated alternative. However, they are typically optimized for high signal-to-noise, long-duration networks and struggle with the challenges presented by microseismic datasets, which are purpose-built for limited time without previously detected seismicity. In this study, we demonstrate how a network-wide earthquake phase picker, the Phase Neural Operator (PhaseNO), can be adapted to microseismic monitoring using transfer learning. Starting from a PhaseNO model pre-trained on more than 57,000 three-component earthquake and noise records, we fine-tune the model using only 200 labeled and noise seismograms from induced events in hydraulic-fracturing settings. The fine-tuned model thus preserves the rich spatio-temporal representation learned from abundant earthquake data, while adapting to the characteristics and labeling conventions of microseismic phases, which are often picked on peaks or troughs rather than onsets. We evaluate performance on three distinct real-world microseismic datasets with different network geometries and acquisition parameters. Compared to the original PhaseNO and a conventional workflow, the adapted model increases F1 score and accuracy by up to 30%, and strongly reduces systematic timing bias and pick uncertainty. Because the adaptation relies on a small, campaign-specific calibration set, the approach is readily transferable to other microseismic tasks where public earthquake data and pre-trained models are accessible. The associated code will be released openly at https://github.com/ayratabd/MicroPhaseNO.
Similar Papers
Microseismic event classification with a lightweight Fourier Neural Operator model
Geophysics
Makes earthquake warnings faster and cheaper.
A composition of simplified physics-based model with neural operator for trajectory-level seismic response predictions of structural systems
Applications
Predicts earthquake damage faster and more accurately.
PMNO: A novel physics guided multi-step neural operator predictor for partial differential equations
Machine Learning (CS)
Predicts future events in science faster and better.