Score: 0

Evaluating the Navigation Capabilities of a Modified COAST Guidewire Robot in an Anatomical Phantom Model

Published: December 15, 2025 | arXiv ID: 2512.13477v1

By: Timothy A. Brumfiel , Revanth Konda , Drew Elliott and more

To address the issues that arise due to the manual navigation of guidewires in endovascular interventions, research in medical robotics has taken a strong interest in developing robotically steerable guidewires, which offer the possibility of enhanced maneuverability and navigation, as the tip of the guidewire can be actively steered. The COaxially Aligned STeerable (COAST) guidewire robot has the ability to generate a wide variety of motions including bending motion with different bending lengths, follow-the-leader motion, and feedforward motion. In our past studies, we have explored different designs of the COAST guidewire robot and developed modeling, control, and sensing strategies for the COAST guidewire robot. In this study, the performance of a modified COAST guidewire robot is evaluated by conducting navigation experiments in an anatomical phantom model with pulsatile flow. The modified COAST guidewire robot is a simplified version of the COAST guidewire robot and consists of two tubes as opposed to three tubes. Through this study, we demonstrate the effectiveness of the modified COAST guidewire robot in navigating the tortuous phantom vasculature.

Category
Computer Science:
Robotics