Score: 0

Non-Resolution Reasoning: A Framework for Preserving Semantic Ambiguity in Language Models

Published: December 15, 2025 | arXiv ID: 2512.13478v1

By: Kei Saito

Potential Business Impact:

Lets AI understand words with many meanings.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Premature semantic collapse -- the forced early commitment to a single meaning -- remains a core architectural limitation of current language models. Softmax-driven competition and greedy decoding cause models to discard valid interpretations before sufficient context is available, resulting in brittle reasoning and context failures. We introduce Non-Resolution Reasoning (NRR), a general computational framework that preserves semantic ambiguity during inference and performs resolution only when explicitly required. NRR integrates three components: (1) Multi-Vector Embeddings that maintain multiple viable interpretations per token, (2) Non-Collapsing Attention that prevents winner-take-all dynamics across layers, and (3) Contextual Identity Tracking (CIT), which assigns context-specific identities to recurring entities (e.g., distinguishing "Dr. Smith the cardiologist" from "Dr. Smith the researcher"). These mechanisms are unified by an external Resolution Operator $ρ$ that makes semantic commitment explicit, controllable, and task-dependent. Unlike standard architectures, NRR separates representation from resolution, allowing a single model to shift between creative, factual, and ambiguity-preserving reasoning without retraining. A synthetic evaluation demonstrates NRR's ability to preserve ambiguity and track context: CIT-enhanced models achieve 90.9% accuracy on out-of-distribution identity-shift tasks, compared to 9.1% for transformer baselines. NRR provides a principled alternative to premature collapse, reframing ambiguity as an explicit representational state rather than a failure mode. The question is not whether AI should resolve ambiguity, but when, how, and under whose control.

Page Count
19 pages

Category
Computer Science:
Computation and Language