A Class of Accelerated Fixed-Point-Based Methods with Delayed Inexact Oracles and Its Applications
By: Nghia Nguyen-Trung, Quoc Tran-Dinh
In this paper, we develop a novel accelerated fixed-point-based framework using delayed inexact oracles to approximate a fixed point of a nonexpansive operator (or equivalently, a root of a co-coercive operator), a central problem in scientific computing. Our approach leverages both Nesterov's acceleration technique and the Krasnosel'skii-Mann (KM) iteration, while accounting for delayed inexact oracles, a key mechanism in asynchronous algorithms. We also introduce a unified approximate error condition for delayed inexact oracles, which can cover various practical scenarios. Under mild conditions and appropriate parameter updates, we establish both $\mathcal{O}(1/k^2)$ non-asymptotic and $o(1/k^2)$ asymptotic convergence rates in expectation for the squared norm of residual. Our rate significantly improves the $\mathcal{O}(1/k)$ rates in classical KM-type methods, including their asynchronous variants. We also establish $o(1/k^2)$ almost sure convergence rates and the almost sure convergence of iterates to a solution of the problem. Within our framework, we instantiate three settings for the underlying operator: (i) a deterministic universal delayed oracle; (ii) a stochastic delayed oracle; and (iii) a finite-sum structure with asynchronous updates. For each case, we instantiate our framework to obtain a concrete algorithmic variant for which our convergence results still apply, and whose iteration complexity depends linearly on the maximum delay. Finally, we verify our algorithms and theoretical results through two numerical examples on both matrix game and shallow neural network training problems.
Similar Papers
A Kernel-based Stochastic Approximation Framework for Nonlinear Operator Learning
Machine Learning (Stat)
Teaches computers to solve hard math problems.
Kernel-based Stochastic Approximation Framework for Nonlinear Operator Learning
Machine Learning (Stat)
Teaches computers to solve hard math problems.
New flexible and inexact Golub-Kahan algorithms for inverse problems
Numerical Analysis
Improves blurry pictures and scans using math.