Quantum channel tomography and estimation by local test
By: Kean Chen, Nengkun Yu, Zhicheng Zhang
We study the estimation of an unknown quantum channel $\mathcal{E}$ with input dimension $d_1$, output dimension $d_2$ and Kraus rank at most $r$. We establish a connection between the query complexities in two models: (i) access to $\mathcal{E}$, and (ii) access to a random dilation of $\mathcal{E}$. Specifically, we show that for parallel (possibly coherent) testers, access to dilations does not help. This is proved by constructing a local tester that uses $n$ queries to $\mathcal{E}$ yet faithfully simulates the tester with $n$ queries to a random dilation. As application, we show that: - $O(rd_1d_2/\varepsilon^2)$ queries to $\mathcal{E}$ suffice for channel tomography to within diamond norm error $\varepsilon$. Moreover, when $rd_2=d_1$, we show that the Heisenberg scaling $O(1/\varepsilon)$ can be achieved, even if $\mathcal{E}$ is not a unitary channel: - $O(\min\{d_1^{2.5}/\varepsilon,d_1^2/\varepsilon^2\})$ queries to $\mathcal{E}$ suffice for channel tomography to within diamond norm error $\varepsilon$, and $O(d_1^2/\varepsilon)$ queries suffice for the case of Choi state trace norm error $\varepsilon$. - $O(\min\{d_1^{1.5}/\varepsilon,d_1/\varepsilon^2\})$ queries to $\mathcal{E}$ suffice for tomography of the mixed state $\mathcal{E}(|0\rangle\langle 0|)$ to within trace norm error $\varepsilon$.
Similar Papers
Optimal learning of quantum channels in diamond distance
Quantum Physics
Makes quantum computers work better by fixing errors.
Optimal lower bounds for quantum state tomography
quant-ph
Helps computers learn about hidden things better.
Query-Optimal Estimation of Unitary Channels via Pauli Dimensionality
Quantum Physics
Learns secret quantum computer codes faster.