Evaluating Frontier LLMs on PhD-Level Mathematical Reasoning: A Benchmark on a Textbook in Theoretical Computer Science about Randomized Algorithms
By: Yang Cao , Yubin Chen , Xuyang Guo and more
Potential Business Impact:
AI helps solve hard math problems for scientists.
The rapid advancement of large language models (LLMs) has led to significant breakthroughs in automated mathematical reasoning and scientific discovery. Georgiev, G${ó}$mez-Serrano, Tao, and Wagner [GGSTW+25] demonstrate that AI systems can explore new constructions and improve existing bounds, illustrating the growing potential of LLMs to accelerate mathematical discovery. Similarly, Bubeck et al. [BCE+25] show that GPT-5 can meaningfully contribute to scientific workflows, from proposing hypotheses to generating proofs and analyses. Despite these advances, a rigorous evaluation of these models on canonical, graduate-level mathematical theory remains necessary to understand their baseline reasoning capabilities. In this paper, we present a comprehensive benchmark of four frontier models: GPT-5-Thinking, Gemini-3-Pro, Claude-Sonnet-4.5-Thinking, and Grok-4 against the classic curriculum of Randomized Algorithms by Motwani and Raghavan [MR95]. We tasked each model with generating formal LaTeX proofs for a series of lemmas and exercises spanning the textbook. We find that while the top-tier models (Gemini, and Claude) achieve a high accuracy rate (approx. 66%), demonstrating a robust grasp of probabilistic method and formal logic, other models lag significantly in consistency (approx. 40%). We provide a qualitative analysis of the generated proofs, highlighting differences in conciseness, hallucination rates, and logical structure. Our results suggest that while frontier models have reached a threshold of proficiency suitable for graduate-level pedagogical assistance and formalization, significant variance exists in their reliability for rigorous mathematical derivation. The code and the full set of LLM-generated responses are open-sourced and publicly available at https://github.com/magiclinux/math_benchmark_probability.
Similar Papers
Evaluating the Reasoning Abilities of LLMs on Underrepresented Mathematics Competition Problems
Artificial Intelligence
Tests AI math skills on tough competition problems.
The 2025 Planning Performance of Frontier Large Language Models
Artificial Intelligence
AI can now plan better, like a smart assistant.
Large Language Models' Reasoning Stalls: An Investigation into the Capabilities of Frontier Models
Artificial Intelligence
AI reasoning skills haven't improved lately.